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Abstract—This paper presents an ultrasound simulation plat-
form to synthesize realistic ultrasound eye tracking data as a
function of transducer/ system design, sensor noise, eye/ face
occlusion, and headset slippage. Simulation data were synthesized
using a single face with adjustable gaze and eyelid opening in
the presence of headset slippage. The data generated using this
face/eye model was input into a machine learning algorithm to
jointly estimate gaze and headset slippage. We achieved gaze root-
mean-square-error (RMSE) of 0.085° and 0.756° without and
with headset slippage, respectively. We anticipate that the pro-
posed end-to-end simulation pipeline will enable tractable design
optimization of wearable ultrasound devices and facilitate further
investigation of ultrasound sensing solutions as a complementary
technology to camera-based eye-tracking for AR/VR applications.

I. INTRODUCTION

Continuous tracking of eye movement is important for de-
tecting psychological states and understanding their relevance
to cognitive processes in both clinical and non-clinical contexts
[11, [2]. More recently, eye tracking has also received increased
attention for applications in augmented reality (AR) and virtual
reality (VR) [3], [4]. Real-time eye tracking provides users’
gaze and eye positions, thus enabling display enhancements
and hands-free interactions in AR/VR.

Most current eye tracking systems rely on cameras to
capture the position of the iris and/or light sources reflected
from the cornea (glints) [5]. These camera-based methods are
naturally sensitive to ambient light, high in power consump-
tion, limited in frame rate, and computationally intensive due
to the use of computer vision and machine learning algorithms
for video processing [6], [7]. Ultrasound sensing for eye
tracking has recently been proposed to inherently mitigate
the limitations of camera-based sensors such as sensitivity
to ambient light [8], [9]. One of the significant advantages
of ultrasound sensing is that ultrasound’s reflectivity at all
eye surfaces is more than 99.9% due to the high acoustic
impedance mismatch at the air/eye interface [8]. This offers up
to 50 better reflectivity compared to optical-based techniques
(2% reflection at the air/cornea interface [10]). Furthermore,
recent breakthroughs in Micro-Electro-Mechanical-Systems
(MEMS)-based ultrasound transducers enable ultrasound de-
vices to be very small, low cost at scale, and low power [11],
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[12]. These advantages, along with the low latency offered
by ultrasound’s propagation speed, make ultrasound-based eye
tracking very promising for head-mounted wearable devices.

Several studies have demonstrated the feasibility of
ultrasound-based eye tracking in the past few years [8], [9],
[13]. Kaputa and Enderle first explored the possibility of using
non-contact ultrasound sensors to track fast eye movements
using a finite element simulation model with four transducers
positioned perpendicular to the cornea [13]. Golard and Talathi
proposed a ring architecture, which used a constellation of
discrete Capacitive Micromachined Ultrasonic Transducers
(CMUTs) distributed on the inner ring of a glasses frame,
and machine learning to estimate gaze, achieving a gaze
root-mean-square-error (RMSE) of 0.97 + 0.18 degrees [8].
Sun et al. integrated piezoelectric micromachined ultrasonic
transducer (PMUT) arrays on the lenses of glasses that were
lightweight (< 25 mg), compact (millimeters in size), high-
speed (response time < 1 ms) and had low power consumption
(71W) with qualitatively robust eye tracking and blink mon-
itoring on human volunteers [9].

Although these studies have shown the potential of ultra-
sound as a viable sensor for eye tracking, none of them have
provided quantitative evidence that ultrasonic eye tracking can
meet or exceed the precision and robustness of conventional
camera-based eye trackers and certainly not in a commercially
viable AR/VR form factor. We anticipate that the perfor-
mance of an ultrasound-based eye tracking system is highly
dependent on many variables and thus optimizing the sys-
tem design experimentally would be very challenging, time-
consuming, and expensive. Therefore, we frame the problem
of ultrasound eye-tracking system design using computational
methods in the simulation domain. In this work, we present
the first ultrasound simulation platform for eye tracking based
on acoustic full-wave propagation. This simulator takes into
consideration various acoustic configurations, sensor noise,
eyelid/face occlusion, and headset slippage-induced variability.
Synthetic pulse-echo data generated by the simulator are
fed into an end-to-end (E2E) machine-learning algorithm to
estimate gaze and headset slippage. Results from the E2E
algorithm are analyzed for various system configurations to
understand how performance can be improved with component
and system-level changes and to provide direction on optimal
designs for ultrasound-based eye tracking.
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II. METHODS
A. Acoustic simulation

We performed ultrasound simulations using k-Wave, an
open-source acoustic toolbox for acoustic wave propagation
that can account for medium heterogeneity, absorption, and
nonlinearities [14]. Using a k-space pseudo-spectral method,
k-Wave requires fewer spatial and temporal grid points to
calculate fast Fourier transforms (FFTs) of wave fields and
is more computationally efficient compared to conventional
finite-difference time-domain (FDTD) models. In this study,
the simulation spatial and temporal step sizes were set to 0.17
mm (equivalent to \,;, /4, where A, = 0.686 mm, which
is the wavelength of acoustic waves in air at 500 kHz) and 21
ns, respectively.

To accelerate simulations, we optimized other simulation
parameters (i.e. use of small prime factors for grid size to
speed up FFTs, single datatype in data-casting) and imple-
mented the C++ version of k-Wave with multi-threading on
a distributed computing cluster. Each simulation was run
in parallel over 96 compute cores (Xeon Platinum 8259CL
2.5GHz, Intel, California, USA) with 40 GB of collective
memory. These optimizations provided a 10x speed improve-
ment compared to the MATLAB-only version of k-Wave
reducing the average simulation execution time to within 30
minutes per gaze.

B. Simulation setup

1) Acoustic eye/face model: For the eye model, we used
a simple sphere-on-sphere eye with an eyeball radius of 12.2
mm, a cornea radius of 8.7 mm, and a 4.47 mm distance
between the centers of the two spheres. Different mediums
such as air, cornea, sclera, and skin (at 20°C) were assigned
sound speeds of 343, 1553, 1583, and 1624 m/s and densities
of 1.2754, 1024, 1048, and 1020 kg/m?>, respectively [15],
[16]. Attenuation « in k-Wave was modeled as a power law.

We simulated 2-directional gazes [yaw, pitch] € £30° with
a b° step size (resulting in 169 gaze angles in total). In order
to simulate occlusion during eye tracking, we used a set of
anatomically-similar CAD models of the face and eyelids and
centered the eyelid opening with the center of the eye along
the optical axis as shown in Fig.1. The CAD models shared
the same geometric profile but with different eyelid openings
of 15, 30, or 45°. Eyelash occlusions were not included herein.

2) Ultrasound transducer: Previous studies have inves-
tigated ultrasound transducers with center frequencies (f.)
between 500 kHz to 1.7 MHz for eye tracking [8], [9]. Higher
frequencies offer better temporal resolution but lower signal-
to-noise-ratio (SNR) because ultrasound signals attenuate ex-
ponentially in air with increasing frequency. Therefore, in this
study, we implemented all simulations at f. = 500 kHz,
which has been shown to be capable of providing an SNR
> 40 dB using MEMS-based ultrasound transducers [9]. Each
ultrasound transducer was modeled as a 1.22x 1.22 mm square
array that consists of 4 x 4 elements with an element radius
of 0.2 mm and a half-wavelength spacing (0.34 mm) between
elements.
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Fig. 1. K-Wave simulation setup. Left: Cross-section of the medium volume
on sagittal plane. Right: The ring pattern for ultrasound transducers. Blue:
Nominal transducer locations; Green: Effective transducer locations for one
random slippage value; Black: point sensors where signals are being recorded.
The red dot represents the apex of cornea surface at [yaw, pitch] = [0,0].

3) Ring configuration: Our previous study demonstrated
the feasibility of using a circular ring of ultrasound transducers
for eye tracking [8]. In this study, we investigated a non-
circular ring pattern consisting of 20 transducers distributed
on the inner ring of a realistic glasses frame with varying
eye reliefs (Fig.1). Note that the large number of transducers
in this ring pattern was not used because all transducers
were necessary to achieve accurate/robust eye tracking, but
because increasing the number of receivers did not increase
simulation time and can be useful for down-selecting the
best locations of a smaller number of transducers in post-
processing. All transducers were effectively oriented towards
the apex of the cornea when the eye was pointing straight
ahead (gaze angle [yaw, pitch] = [0,0]) using electronic focal
steering. This transducer orientation reduced the impact of
occlusions, since most of the transmitted and received energy
from the transducers were focused on the eye rather than
the surrounding face and eyelids. For simplicity, only one
transducer (index 1 in Fig.1) was used for transmission while
all transducers were used for receiving.

4) Headset slippage: Head-mounted devices often move
around or slip during normal use. In our study, we assumed
that this slippage falls within the range of Az = +1.0 mm,
Ay = +0.7 mm, Az = £2.0 mm from the nominal location
[17]. To investigate how headset slippage may impact eye
tracking performance, we considered the following 2 cases:

1) Worst-case slippage: Reflection signals were received
by the transducers after they slipped with the largest
possible offsets within our slippage range.

2) Random slippage: Reflection signals were received by
the transducers after applying offsets Az, Ay, and Az
that were randomly chosen within our slippage range.

To include slippage without significantly increasing simu-
lation runtime, we recorded from 20800 point sensors in a
2x1.4x4 mm volume centered at the nominal location of each
transducer (Fig.1). We then summed the waveforms received
by a subset of sensors corresponding to a particular amount
of slippage. Synthetic data with slippage was mixed together
with synthetic data recorded at nominal transducer locations
for both training and testing data for the machine learning
model. It should be noted that all transducers were shifted
uniformly with identical offsets for each slippage sample.
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C. Pipeline for synthetic data generation and analysis

In k-Wave, a 3-cycle sinusoidal burst was applied to the
ultrasound transducers with an anti-aliasing low-pass filter
(cutoff at 2 MHz) and transmitted to the eye/face through the
air. The reflection signals from the eye/face were received by
point sensors and summed across elements on each transducer
to produce the received signals on the transducer arrays. A
3rd-order Butterworth bandpass filter with a bandwidth equal
to 20% of the transducer’s resonant frequency was applied to
these waveforms to compensate for the device’s bandwidth.
Bandlimited Gaussian noise (due to additive Gaussian noise
from the pre-amplifier) was then added to the received signals
to produce 50 synthetic recordings per gaze angle.

The simulator was then used to synthesize the dataset used
for training/testing the ML model by concatenating data from
169 gaze angles x4 eyelid occlusions (15°, 30°, 45°, and
no occlusion) x50 recordings per sample. Different values
of system-level variables, including SNR, number of features,
number of receivers, location/number of transmitters, headset
slippage, etc., were tested in simulation to investigate how they
impact eye tracking performance.

Peak amplitude and time-of-flight (ToF) were extracted as
features from the synthetic dataset using the same methods
described by Golard and Talathi [8]. We also investigated
alternative approaches to analyze ToF such as the time-of-
arrival for the front edge of the ultrasound signal (using the
time at which the slope of the envelope is largest) and the
difference of ToF across transducers. These features were then
fed into 2 regression trees trained with gradient boosting meth-
ods [18] to independently estimate gaze along the horizontal
and vertical axes with a train/test split ratio of 80/20 [8].
For datasets that involved slippage, 3 regression trees were
trained to independently estimate slippage in 3 dimensions
simultaneously. The following parameters were used for the
ML model: max tree depth = 7, number of regression trees =
100, and the learning rate was fine-tuned in the range of 0.05
- 0.3 (default value = 0.1). The performance of eye tracking
using synthetic datasets was quantified using the adjusted R?
scores, root-mean-square-errors (RMSE), and the precision of
gaze and slippage prediction.

ITI. RESULTS
A. SNR

In Table I we summarize the performance for gaze esti-
mation using the ultrasound synthetic data. With 60dB SNR
(Sim 1.0.0), the ML algorithm was able to produce a gaze
RMSE error of 0.085° with an adjusted R? score of 99.99%.
However, when SNR decreased to 16 dB, the precision of
gaze estimation degraded, resulting in a gaze RMSE error
of 0.82° with an adjusted R? score of 99.81%. Though the
adjusted R? scores were relatively high for both SNR values,
the percentage of estimated samples that fell within 1° and
0.1° of the actual gaze was reduced significantly. We observed
a larger reduction in gaze in the pitch direction (up-down)
compared to the yaw direction (left-right). This follows the fact

that eyelid occlusions occur mostly near the top and bottom of
the eye, thus hindering gaze estimation more severely along
the pitch direction.

TABLE I
GAZE ESTIMATION PERFORMANCE METRICS

1.0.0 1.0.1 1.1.1 1.1.2 1.2.0 1.2.2

SNR (dB) 60 16 60 60 60 60

Slippage No No worst | random No random

Features 4 4 4 4 2 2
Adjusted R? 0.999 | 0.998 | 0.999 0.998 0.999 0.993
RMSE 0.085 | 0.823 | 0.074 0.756 0.112 1.591
1° precision, yaw 100.0 97.9 100.0 98.9 99.9 94.7
1° precision, pitch | 99.8 79.1 99.7 86.2 99.8 454

B. Headset slippage

Our results showed that the worst-case slippage (Sim 1.1.1)
had a negligible impact on the performance for gaze esti-
mation, compared to the baseline simulation with no headset
slippage (Sim 1.0.0). However, major performance degradation
was observed for random slippage when we added synthetic
data using 8 different values of slippage that were randomly
distributed within the previously specified range (Sim 1.1.2).
For random slippage, the estimated gaze RMSE error in-
creased from 0.0850° to 0.7562° and the precision within
0.1° decreased noticeably to 59.37% and 17.36% for yaw and
pitch gazes, respectively. Such performance degradation was
expected, since headset slippage changes the distance between
the transducers and the eye, leading to changes in ToF that
can be difficult to distinguish from ToF differences due to
variations in gaze. When feeding the amplitude and time-
of-flight features in 3 additional gradient-boosted trees, we
were able to jointly estimate headset slippage in 3 dimensions
together with gaze, achieving a total slippage RMSE error of
0.12 mm and a slippage estimation precision of 87.55% within
0.2 mm (Fig.2)

Fig. 2. Nominal (blue X) vs estimated (orange dot) headset slippage.

C. Number of features and receivers

Table.Il summarized how the number of transducers and
features impacted the performance of gaze estimation. With
a fixed number of transducers, the ML model achieved better
performance using 4 features than 2 features for both synthetic
datasets with and without slippage (Sim 1.2.2 and 1.2.0,
respectively), particularly for pitch gaze estimation. This sug-
gested that more features (i.e., ToF of the envelope peak, ToF
of the front-edge, and difference in ToF across transducers) can
be helpful even though they are different methods to describe
the same type of feature (i.e. ToF) in the synthetic data.
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To investigate the robustness of gaze estimation with fewer
transducers, we down-selected from all 20 transducers in the
ring pattern to the 4 following subsets: (1) 15: Transducers 1-
15; (2) 9: Transducers 1-6, 8, 10, and 14; (3) 6a: Transducers
1, 8, 9, 10, 12, and 14, which were selected as the “most
important receivers” based on the importance map given by
the gradient boosted trees; (4) 6b: Transducers 1-6. Our results
demonstrated that, the first (15) and third (6a) subsets achieved
comparable precision values to the full ring pattern for gaze
estimation, while the second (9) and the fourth (6b) subsets
resulted in noticeable performance degradations (Table.Il).
This suggested that a sparse set of carefully placed transducers
provides significantly better eye tracking performance than a
dense set of sub-optimally placed ones.

TABLE II
THE IMPACT OF NUMBER OF TRANSDUCERS AND FEATURES ON GAZE
ESTIMATION.

Transducer subset 20 15 9 6a 6b
yaw 2 features | 94.7 | 94.6 | 924 | 934 | 694
4 features | 98.9 | 99.1 | 98.8 | 99.0 | 84.6

pitch 2 features | 454 | 51.0 | 43.7 | 50.3 | 31.0
4 features | 86.2 | 88.2 | 85.8 | 88.0 | 54.3

overall 2 features | 41.8 | 46.9 | 394 | 464 | 209
4 features | 84.8 | 87.0 | 84.6 | 86.9 | 454

IV. DISCUSSION

In this work, we presented the first ultrasound simulation
platform to synthesize ultrasound eye tracking data as a
function of transducer/system design, sensor noise, eye/face
occlusion, and headset slippage. Compared to the ray-tracing
model that was used in our previous study [8], this new plat-
form implemented full-wave simulation to take into consider-
ation reflections and interference effects at eye/face surfaces,
allowing for the synthesis of more realistic ultrasound signals.
Though this simulator was only demonstrated for ML-based
E2E eye tracking herein, it can also be generalized to explore
other non-ML models for ultrasonic eye tracking, such as the
traditional beam-forming approaches using phased arrays.

The results from our E2E algorithm showed that gaze can
be estimated with high precision (RMSE of 0.085°) using
ultrasound when headset slippage is not present and that
adding random slippage degrades gaze estimation significantly
(RMSE of 0.7562°) but still within 1°, which is comparable
to camera-based eye tracking. We also demonstrated that, in
addition to gaze, headset slippage can be estimated by the ML
model as well (RMSE of 0.12 mm). Finally, we showed that
this simulation framework was helpful in determining useful
features within the ultrasound signal from the eye/face and in
reducing the number of transducers with minimal impact on
eye tracking performance.

Ideally, an apple-to-apple comparison between the ultra-
sound and optical-based eye-tracking platforms would be ben-
eficial to fully demonstrate the advantages of using ultrasound
approaches for eye tracking. However, to date, most optical-
based eye trackers were evaluated with different methodolo-
gies, so the performance numbers can only be used to give

us a ballpark understanding of how our platform compares to
theirs. A commercially available VR headset was evaluated in
the visual perimetry at 25 target positions spanning a range
of +26.6° in a head-fixed condition, resulting in an average
accuracy of 4.16° [19]. Another video-based eye tracker was
shown to have a pupil-tracking accuracy of 0.5° [20]. Future
investigations will be necessary to evaluate the performance
of different eye tracking platforms using standardized metrics.

V. CONCLUSION

We presented an end-to-end simulation pipeline that enables
tractable design optimization of wearable ultrasound devices
and shows the feasibility of accurate, robust eye tracking using
ultrasound for a variety of applications including AR/VR. Fu-
ture studies will be required to investigate the impact of other
variabilities on eye tracking performance, such as different Tx
waveforms, improved features, eyelash occlusions, etc.
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